Quick Integrals

  1. $\int_{-\infty }^{\infty }( odd fn) = 0 $
  2. $\int udv = uv – \int vdu$
  3. $\int  e^{ax}dx = [\frac{1}{a}][e^{ax}]$ [a takes negative values too]
  4. $\int xe^{ax}dx = [\frac{1}{a}][x – \frac{1}{a}][e^{ax}]$ [a takes negative values too]
  5. $\int x^{2}e^{ax}dx = [\frac{1}{a}][(x – \frac{1}{a})^2 + \frac{1}{a^2}][e^{ax}]$ [a takes negative values too]


Quick Expansions

  1. $\int_{-\infty }^{\infty }e^{-x^2}dx = \sqrt{pi } = \Gamma (\frac{1}{2}) $
  2. $ \int_{0}^{\infty} x^ne^{-cx}dx = \frac{n!}{c^ { n+1}}$
  3. $\Gamma (\alpha )= \int_{0}^{\infty}x^{\alpha-1}e^{-x}dx = (\alpha -1)!$ $  \alpha > 0$
  4. $\sum_{0}^{\infty}\frac{x^n}{n!} = 1 + x + \frac{x^2}{2!}+ \frac{x^3}{3!}+ …\infty= e^x $

Quick Differentiation

  1. $D(a^x) = a^x lna$ + $D(e^x) = e^x$
  2. $D(x^n) = nx^{n-1}$
  3. $D(F(x)^n) = n(F(x))^{n-1}D(F(x))$
  4. $D(ln(F(x))) = \frac{1}{F(x)}D(F(x))$


 


 

Leave a comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.